Stakeholder-Driven Enablement Through Earth-Observation Information
The project EO-MINERS

W. Eberhard Falck
Laboratoire REEDS, Université de Versailles St. Quentin-en-Yvelines (UVSQ), France

François Blanchard
Bureau des Recherches Geologiques et Minieres (BRGM), Orleans, France

Slavko V. Solar
Geological Survey of Slovenia (GeoZS), Ljubljana, Slovenia

Joachim H. Spangenberg
Sustainable Europe Research Institute (SERI), Köln, Germany

Dominic Wittmer
Wuppertal Institut (WI), Wuppertal, Germany

The Golgotha of open-cast mining - © W.E. Falck, 2010
Objectives

To bring into play Earth Observation-based methods and tools to facilitate and improve interaction between the mineral extractive industry and society in view of its sustainable development while improving its societal acceptability.

http://www.eo-miners.eu/
Context

• For centuries mining has been one of the bases of economic and social development.

• Mining increasingly takes place outside Europe as it has become difficult to obtain social license for new operations or the extension of existing ones.

• The underlying reasons are conflicts of land- and resources use, as well as socio-political conflicts.

• Many conflicts can be traced back to environmental issues caused by a nonchalant attitude in the past towards environmental protection.
The Global Dimension

- is increasingly being recognised in the EU and world-wide.

- Various initiatives aim at making mining more sustainable:
 - European Commission Communication in 2011: ‘Tackling the challenges in commodity markets and on raw materials’
 - European Commission Directive on Wastes from Extractive Industries
 - Self-commitment of the industry, for instance as members of the International Council on Mining & Metals (ICMM)
Earth Observation

• The Group on Earth Observations (GEO) is concerned with the responsible management of natural resources.

• Understanding and monitoring the impacts of resources use is of concern to all stakeholders.

• The technology platform for environmental monitoring is diverse, geographically inconsistent, site specific and lacks integration across technologies.

• GEO’s Global Earth Observing System of Systems (GEOSS) concentrates on natural hazards and climate change only.
Specific Objectives

- to introduce innovative EO tools and services to the mining industry;
- to provide accuracy and quality measures for EO products;
- to demonstrate the application of EO in different case studies;
- to foster dialogue between the mining industry and stakeholders based on EO-derived information;
- to generalise the results obtained for use in operational mining applications.

Study sites in the Czech Republic (open-cast lignite mining), South Africa (open-cast and underground coal mining) and Kyrgyzstan (gold mining) provide the focus for the development work.
Partner Countries

Demonstration sites (CZ, ZA, KG)
Scientific Objectives

- to assess policies and strategies of different stakeholders (operators, regulators, public) and resulting information needs;
- to assess environmental, socio-economic and other sustainable development issues;
- to define indicators for issues that can be addressed using EO;
- to demonstrate the capabilities of integrated EO-based methods in reducing environmental and social impacts of mining;
- to provide reliable and objective information as a basis for a sound dialogue between stakeholders;
- to document procedures developed in a compendium of best practices to assist and inform the dialogue between stakeholders.
Enabling Through Information

• Different stakeholders are informed to different levels about mining issues.
• Lack of independent and unbiased information can hinder effective processes of social decision-finding.
• This can also apply to local or regional authorities who are not directly involved in licensing procedures.
• Providing reliable and objective information enables stakeholders to participate in decision finding processes in a meaningful way.
• Information is more than data - it is the context that gives meaning to data.
• Information generates understanding and knowledge for stakeholders who may not have the training to understand or interpret (raw) data.
• Information may often need to be further condensed into indicators.
Indicators

- Meaningful information on complex environmental or social issues can often be provided in the form of indicators.
- Indicators
 - provide a metric of the state of (complex) systems;
 - allow to monitor trends when measurements are repeated over time;
 - are useful tools to reduce complex sets of diverse data into manageable sets for policy making;
 - allow to monitor the effect of policy implementation.
What for and for Whom?

- The development of meaningful indicators is a social and not (only) an engineering process.
- The social process defines what to indicate, for whom and why.
- However: Indicators must be based on measurable quantities.
- Scientists and engineers are also stakeholders in this process.
- Indicator development iterates between stakeholder expectation and operational feasibility.
Possible Pitfalls

• Confusing intensive and extensive properties can lead to oversimplification.

• For instance: The amount of mine waste generated is meaningless as indicator, if not put into relation to e.g. the total ore recovered.

• If related to the ore grade and the mine type, it allows assessing the efficiency of the mining operation.

• It still needs to be related to the quality of waste management: a small quantity of poorly managed waste can pose a higher environmental risk than a large quantity of well-managed waste.
Candidate Indicators

- A multi-pronged, iterative approach is used:
 - heuristic set of candidate indicators by expert elucidation
 - examination of site-specific conceptual models for the study sites
 - a semi-deliberative approach with input from outside stakeholders

- The expert-derived set was tested for completeness against conceptual site models

- The resulting set was tested during stakeholder interviews in South Africa

- The candidate set of indicators is reviewed for measurability by EO-experts

- The final set of indicators will be subject to stakeholder evaluation during site workshops at the end of the project.
Development Flow Diagram

WP2
- Technology Assessment
- Technology Development
- Technology Testing

WP1/WP5
- Expert Elucidation
- Indicator A
- Indicator B
- Indicator X
- Feasibility Evaluation
- Indicator A
- Indicator C
- Indicator G

WP3
- Stakeholder Elucidation
- Indicator 1
- Indicator 2
- Indicator n
- Feasibility Evaluation
- Indicator 2
- Indicator 7
- Indicator 9
- Merge Indicators
- Indicator A
- Indicator 2
- Indicator G
- Indicator 9

Conceptual Site Models
- Process α
- Process β
- Process n
- Feasibility Evaluation
- Indicator γ
- Indicator δ
- Indicator λ

Time
Candidate Indicator Categories

<table>
<thead>
<tr>
<th></th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Land-use</td>
</tr>
<tr>
<td>B</td>
<td>Mass Flows</td>
</tr>
<tr>
<td>C</td>
<td>Energy Flows</td>
</tr>
<tr>
<td>D</td>
<td>Air quality and other nuisances</td>
</tr>
<tr>
<td>E</td>
<td>Water quality</td>
</tr>
<tr>
<td>F</td>
<td>Transport</td>
</tr>
<tr>
<td>G</td>
<td>Geotechnical hazards and accidents</td>
</tr>
<tr>
<td>H</td>
<td>Industrial and other accidents</td>
</tr>
<tr>
<td>I</td>
<td>Social impacts</td>
</tr>
<tr>
<td>J</td>
<td>Regional development</td>
</tr>
<tr>
<td>K</td>
<td>Economic vulnerability/resilience</td>
</tr>
</tbody>
</table>
Example: A - Land Use

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Total land-use by mining and milling - topographical footprint</td>
</tr>
<tr>
<td>A2</td>
<td>Mining land-use intensity – topographical footprint vs. amount of marketable product.</td>
</tr>
<tr>
<td>A3</td>
<td>Artisanal and Small-Scale Mining – topographical footprint of ASM sites</td>
</tr>
<tr>
<td>A4</td>
<td>Residential land use - residential developments around mining areas</td>
</tr>
<tr>
<td>A5</td>
<td>Informal settlements – sprawl of squatters areas, slums</td>
</tr>
<tr>
<td>A6</td>
<td>Sites set aside, protected areas – nature reserves, wetlands, sites of spiritual value etc.</td>
</tr>
<tr>
<td>A7</td>
<td>Recultivation success on mined-out areas and waste/spoil heaps</td>
</tr>
<tr>
<td>A8</td>
<td>Areas indirectly affected and their potential use - Impact of mining on the potential use of operation and surrounding areas, impact on land value / prices (opportunity cost).</td>
</tr>
<tr>
<td>A9</td>
<td>Soil fertility of remediated mine areas</td>
</tr>
<tr>
<td>A10</td>
<td>Existence and legal status of environmental impact assessments</td>
</tr>
</tbody>
</table>
Example: Mass/Energy Flows

B - Mass Flows

B1 Waste volumes generated – volume (change) vs. amount of marketable product

B2 Erosion – erosional losses on residues heaps

C - Energy Flows

C1 Total energy consumption per ton of coal / lignite / ore produced

C2 EROI (Energy Return on Energy Investment) - amount of energy spent related to the energy content of the product
Candidate Indicator Space

Expert-derived
- Site models
- Stakeholders

EO-accessible
- Czech Republic
- South Africa
- Kyrgyzstan
Opportunities

- EO offers a unique opportunity to collect spatial data for better assessment of mining-related environmental and social impacts.

- Tools and processes under development will help to inform deliberative decision-finding procedures as stipulated by e.g. the Aarhus Convention.

- Sustained and accepted long-term remediation solutions require all stakeholders to be involved in the decision-finding processes.

- Decision-making along the life-cycle of a mining facility faces a number of technical and societal challenges:
 - site assessment uncertainties, e.g. data gaps in the inventory, insufficient site characterisation, integrity of engineering, …
 - uncertainties about the future site development
 - uncertainties over the range of natural phenomena / ‘events’ in the future
 - uncertainty over the internal evolution of the designed structures / ‘processes’.
Mutual Trust Through Information

• Mine managers are faced with the challenge to
 – obtain and maintain public trust;
 – achieve institutional constancy or to ensure continuity of e.g. long-term stewardship activities; and
 – learn from past and ongoing experience as technological and management means for implementation are developed.

• Independent access to site information fosters mutual trust

• It allows the public / regulators to monitor, whether the site develops as anticipated by the operator.

• It also facilitates mediation in the case of dispute.

• This can be crucial in maintaining mutual trust, as often critical changes are not readily visible from the surface or not observable without a dedicated on-site measurement campaigns.
Facilitating Monitoring

- Tailor-made EO-services allow the monitoring of important parameters of site development at relatively low cost and often in near real-time.
- Adequately visualised EO-products allow the general public and often also the regulators to better ‘see’ what is happening at a site.
- GIS-supported visualisation allows stakeholders to better see how site developments might relate to their personal situation, e.g. distances to and possible impacts on their private home or their community.
Conclusions 1

- First experiences with stakeholder interaction and confronting stakeholders with possible EO-services have been gained.

- Some local interest groups expected that the project would help them to achieve their interests and goals.

- This indicates the need for shared information and thus validates the project’s objectives.

- The majority of stakeholders interviewed had not been aware of the possibilities of EO and in particular of remote sensing techniques.

- This clearly indicates the need for a sustained dialogue between EO-service providers and stakeholders outside the project, if the project aim of enabling these stakeholders should be achieved.
Conclusions 2

• During stakeholder interviews in South Africa very few suggestions for amendment to the candidate list of indicators were made - this places a certain confidence into their relevance with respect to scope and coverage.

• Sharing information through EO-services will empower stakeholders and thus create an environment of mutual trust.

• In an environment of mutual trust it becomes less likely that actions will be undertaken that are environmentally or socially detrimental.

• In this sense, EO-services can contribute to make mining operations more sustainable in an environmental and socio-economic sense.
Acknowledgements

The results presented here would not have been possible without the collaboration of all the project partners:

- AngloCoal - South Africa
- BGS - British Geological Survey, UK
- BRGM - Bureau de Recherches Géologique et Minières, France
- CGS - Council for Geoscience, South Africa
- CzechGS - Czech Geological Survey
- DLR - Deutsche Gesellschaft für Luft- und Raumfahrt, Germany
- GeoZS - Slovenian Geological Survey
- MIRO - Minerals Research Organisation, UK
- SU - Sokolovská uhelná, a.s, Czech Republic
- TAU - Tel Aviv University, Israel
- UVSQ - Université de Versailles Saint-Quentin-en-Yvelines, France
- WI - Wuppertal Institut, Germany

The support by the European Commission is also gratefully acknowledged.